Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces

نویسندگان

  • Leon A. Takhtajan
  • Lee-Peng Teo
چکیده

Using Polyakov’s functional integral approach and the Liouville action functional defined in [ZT87c] and [TT03a], we formulate quantum Liouville theory on a compact Riemann surface X of genus g > 1. For the partition function 〈X〉 and correlation functions with the stress-energy tensor components 〈n i=1 T (zi ) ∏l k=1 T̄ (w̄k)X〉, we describe Feynman rules in the background field formalism by expanding corresponding functional integrals around a classical solution, the hyperbolic metric on X . Extending analysis in [Tak93, Tak94, Tak96a, Tak96b], we define the regularization scheme for any choice of the global coordinate on X . For the Schottky and quasi-Fuchsian global coordinates, we rigorously prove that oneand two-point correlation functions satisfy conformal Ward identities in all orders of the perturbation theory. Obtained results are interpreted in terms of complex geometry of the projective line bundle Ec = λ H over the moduli space Mg , where c is the central charge and λH is the Hodge line bundle, and provide the Friedan-Shenker [FS87] complex geometry approach to CFT with the first non-trivial example besides rational models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Liouville Theory to the Quantum Geometry of Riemann Surfaces

• Quantum Liouville theory provides the simplest example for a two-dimensional conformal field theory with continuous spectrum . It can therefore be regarded as a paradigm for a whole new class of two-dimensional conformal field theories which are neither rational nor quasi-rational. • The quantized Liouville theory is related to quantized spaces of Riemann surfaces. This interpretation should ...

متن کامل

Quantum Gravity in 2+1 Dimensions I: Quantum States and Stringy S-Matrix

We consider the theory of pure gravity in 2+1 dimensions, with negative cosmological constant. The theory contains simple matter in the form of point particles; the later are classically described as lines of conical singularities. We propose a formalism in which quantum amplitudes for process involving black holes and point particles are obtained as the Liouville field theory (LFT) correlation...

متن کامل

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

Uniformization Theory and 2d Gravity I. Liouville Action and Intersection Numbers

Department of Mathematics Imperial College 180 Queen’s Gate, London SW7 2BZ, U.K. and Department of Physics “G. Galilei” Istituto Nazionale di Fisica Nucleare University of Padova Via Marzolo, 8 35131 Padova, Italy ABSTRACT This is the first part of an investigation concerning the formulation of 2D gravity in the framework of the uniformization theory of Riemann surfaces. As a first step in thi...

متن کامل

Liouville and Toda field theories on Riemann surfaces

We study the Liouville theory on a Riemann surface of genus g by means of their associated Drinfeld–Sokolov linear systems. We discuss the cohomological properties of the monodromies of these systems. We identify the space of solutions of the equations of motion which are single–valued and local and explicitly represent them in terms of Krichever–Novikov oscillators. Then we discuss the operato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005